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Green Function 

Structure 

3.1. Introduction. 

3.2. Construction of Green function. 

3.3. Construction of Green’s function when the boundary value problem contains a parameter. 

3.4. Non–homogeneous ordinary Equation. 

3.5. Basic Properties of Green’s Function. 

3.6. Fredholm Integral Equation and Green’s Function. 

3.7. Check Your Progress. 

3.8. Summary. 

3.1. Introduction. This chapter contains methods to obtain Green function for a given non-

homogeneous linear second order boundary value problem and reduction of boundary value problem to 

Fredholm integral equation with Green function as kernel. 

31.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Construction of Green function. 

(ii) Reduction of boundary value problem to Fredholm integral equation with Green function as kernel. 

3.1.2. Keywords. Green function, Integral Equations, Boundary Conditions. 

3.2. Construction of Green function. Consider a differential equation of order n 

   L(u) = 
n n 1 n 2

0 1 2 np (x) u p (x) u p (x) u ....... p (x) u      = 0  (1) 
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where the functions 0 1 2 np (x),p (x) , p (x),......., p (x)  are continuous on [a, b], p0(x)  0 on [a, b], and the 

boundary conditions 

Vk(u) = 1 2 n 1 n 1
k k k ku(a) u (a) u (a) .......... u (a)           

    
1 2 n 1 n 1

k k k ku(b) u (b) u (b) ............ u (b)              (2) 

for k = 1, 2,…,n, where the linear forms V1, V2,…, Vn in u(a), u (a),…,
n 1u 

(a), u(b), u (b), …, 
n 1u 

(b) 

are linearly independent. 

The homogeneous boundary value problem (1), (2) contains only a trivial solution u(x)   0. 

 Green’s function of the boundary value problem (1), (2) is the function G (x,  ) constructed for any 

point  , a <   < b satisfying the following properties : 

1. G(x,  ) is continuous in x for fixed   and has continuous derivatives with regard to x upto order 

(n2) inclusive for axb. 

2. Its (n1)th derivative with regard to x at the point x =   has a discontinuity of first kind, the 

jump being equal to 
 0 x = 

1

p (x)


 ,  that is, 

1 1

1 1
00 0

1
( , ) ( , )

( )x x

n n

n n

x x

G x G x
p

 

 


 

 

   

    
     

    
    (3) 

where 
0

G
x  

 defines the limit of G(x,  ) as x   from the right and 
0

G
x  

 defines the limit 

of G(x,  ) as x   from the left. 

3. In each of the intervals [a,  ) and ( , b] the function G(x,  ), considered as a function of x, is a 

solution of the equation (1) 

   L(G) = 0       (4) 

4. The function G(x,  ) satisfies the boundary conditions (2) 

   Vk(G) = 0, k = 1, 2, 3,…,n,     (5) 

If the boundary value problem (1), (2) contains only the trivial solution u(x)   0 then the operator L 

contains one and only one Green’s function G(x,  ). 

Consider u1(x), u2(x),…, un(x) be linearly independent solutions of the equation L(u) = 0. From the 

condition 1, the unknown Green’s function G(x,  ) must have the representation on the intervals [a,  ) 

and ( , b] 

  G(x,  ) = a1u1(x) + a2u2(x) + … + anun(x), ax <  

and  G(x,  ) = b1u1(x) + b2u2(x) + … + bnun(x),  x <b,  

where a1, a2,…,an, b1, b2,…, bn are some functions of  . 



Integral Equations and Calculus of Variations 45 

 

From the condition 1, the continuity of the function G(x,  ) and of its first (n2) derivatives with 

regard to x at the point x =   yields 

 [b1u1( ) + b2u2( ) + … + bnun( )][a1u1( ) + a2u2( ) +… + anun( )] = 0 

 1 1 2 2 n n 1 1 2 2 n n[b u ( ) b u ( ) ... b u ( )] [a u ( ) a u ( ) ... a u ( )] 0                   

 1 1 2 2 n n 1 1 2 2 n n[b u ( ) b u ( ) ... b u ( )] [a u ( ) a u ( ) ... a u ( )] 0                   

 …  ...  …  ...  ... 

 n 2 n 2 n 2 n 2 n 2 n 2
1 1 2 2 n n 1 1 2 2 n n[b u ( ) b u ( ) ... b u ( )] [a u ( ) a u ( ) ... a u ( )] 0                   

Also,  n 1 n 1 n 1 n 1 n 1 n 1
1 1 2 2 n n 1 1 2 2 n n

0

1
[b u ( ) b u ( ) ... b u ( )] [a u ( ) a u ( ) ... a u ( )]

p ( )
     



               

Assume Ck( ) = bk( )ak( ), k = 1, 2, … , n ; then the system of linear equations in Ck( ) are 

obtained  

   1 1 2 2 n nC u ( ) C u ( ) ... C u ( ) 0       

   1 1 2 2 n nC u ( ) C u ( ) ... C u ( ) 0         

   … … … … …  

   
n 2 n 2 n 2

1 1 2 2 n nC u ( ) C u ( ) ... C u ( ) 0         

   n 1 n 1 n 1
1 1 2 2 n n

0

1
C u ( ) C u ( ) ... C u ( )

p ( )
  



         (6) 

The determinant of the system is equal to the value of the Wronskian W(u1, u2, …, un) at the point x =   

and is therefore different from zero. 

From the boundary conditions (2), we have  

   Vk(u) = Ak(u) + Bk(u)      (7) 

where   Ak(u) = 
1 2 n 1 n 1

k k k ku(a) u (a) u (a) ........ u (a)           

    Bk(u) = 
1 2 n 1 n 1

k k k ku(b) u (b) u (b) ........ u (b)           

Using the condition 4, we have  

Vk(G) = a1Ak(u1) + a2Ak(u2) + … + anAk(un) + … + b1Bk(u1) + b2Bk(u2) + … + bnBk(un) = 0, 

where k = 1, 2, …, n. 

Since ak = bkck, so we have  

1 1 k 1 2 2 k 2 n n k n 1 k 1 2 k 2 n k n(b c )A (u ) (b c )A (u ) ... (b c )A (u ) b B (u ) b B (u ) ... b B (u ) 0            

   1 k 1 2 k 2 n k nb V (u ) b V (u ) ... b V (u )    = 1 k 1 2 k 2 n k nc A (u ) c A (u ) ... c A (u )     (8) 
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which is a linear system in the quantities b1, b2, …, bn. The determinant of the system is different from 

zero, that is, 

    

1 1 1 2 1 n

2 1 2 2 2 n

n 1 n 2 n n

V (u ) V (u ) V (u )

V (u ) V (u ) V (u )
0

V (u ) V (u ) V (u )

  

The system of equations (8) contain a unique solution in b1( ), b2( ), ..., bn( ) and since 

ak( ) = bk( )ck( ), it follows that the quantities ak( ) are defined uniquely. 

I. If the boundary value problem (1), (2) is self – adjoint, then Green’s function is symmetric, that is, 

G(x,  ) = G( , x). The converse is true as well. 

II. If at one of the extremities of an interval [a, b], the coefficient of the derivative vanishes. For 

example, p0(a) = 0, then the natural boundary condition for the boundedness of the solution x = a is 

imposed, and at the other extremity the ordinary boundary condition is specified. 

3.2.1. Particular case. We shall construct the Green’s Function ,G x    for a given number , for the 

second differential equation  

    0L u x             (1) 

where    
d d

L p q
dx dx

 
  

 
        (2) 

Together with the homogenous boundary conditions of the form  

    0
du

u
dx

           (3) 

The Green’s function constructed for any point  contains the following 

properties:  

1.  it follows that the function is continuous in x for fixed , in particular, 

continuous at the point x = .  

2. The derivatives of G(which are of finite magnitude) are continuous at every point within the range of 

x except at x =  where it is continuous so that  

     

3. The functions G1 and G2 satisfy homogenous conditions at the end points x = a and x = b respectively.  

4. The function G1 and G2 satisfy the homogenous equations LG = 0 in their defined intervals except at z 

= , that is, 1 0,LG x   , . 

,G x  , a b   

1 2 ;G G   ,G x 

2 1

1
G G

p
    



2 0,L G x  



Integral Equations and Calculus of Variations 47 

 

Consider the Green’s function exists, then the solution of the given differential equation can be 

transformed to the relation 

           (4) 

Consider two linearly independent solutions of the homogeneous equation 

 be the non-trivial solution of the equation, which satisfy the 

homogenous conditions at x = a and x = b respectively.  

Consider the Green’s functions for the problem from the conditions III and IV, in the form 

           (5) 

where the constant C1 and C2 are chosen in a manner that the conditions I and II are fulfilled. Thus, we 

have  

     

      (6) 

The determinant of the system (6) is the Wronskian  evaluated at the point x =  for 

linearly independent solution u1(x) and u2(x), and, hence it is different from zero  

  =     (7) 

By using Abel’s formula, we notice that the expression has the value {C/p()}, where C is a constant 

independent of , that is,        

         (8) 

From the system (6), we have  

     

Thus the relation (5) reduces to  

         (9)  

,G x 

,

b

a

u x G x d      

1 20. andL u Let u v x u u x        

1 1

2 2

,
,

,

C u x x
G x

C u x x

   
   

   

2 2 1 1 0C u C u  

2 2 1 1

1
C u C u

p
   



 1 2,W u u 

0W 

  1 2

1 2

1 2

,
u u

W u u
u u

 
  

  
1 2 2 1u u u u     

1 2 2 1

C
u u u u

p
     



1 2 2 1

1 1
,C u C u

C C
     

1 2

1 2

1
,

,
1

,

u x u x
C

G x

u u x x
C
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This result breaks down iff C vanishes, so that u1 and u2 are linearly dependent, and hence are each 

multiples of a certain non-trivia function U(x). In this case, the function u(x) satisfies the equation L(u) 

= 0 together with the end conditions at x = a, x = b. 

Converse. The integral equation 

   u(x) =       (10) 

where G(x, ) are defined by the relation (9), satisfy the differential equation 

    L(u) + (x) = 0      (11) 

together with the prescribed boundary condition. 

We know that  

  u(x) = 
  

(12) 

  
  

(13) 

   

         (14) 

Since L(u)   

Thus, 

Lu(x)=  

Again, u1(x) and u2(x) satisfy L (u) = 0, hence the first two terms vanish identically. 

So, L u(x) = (x)   L u(x) + (x) = 0 

Therefore, a function u(x) satisfying (10) also satisfies the differential equation (11) 

Again from (12) and (13), we have  

  u(a) =  

   

which shows that the function u defined by (11) satisfies the same homogeneous condition at x = a as 

the function u1. 

( )
b

a
G(x , )  d   





1

C
 ( ) ( )

x b

1 2 1 2
a x

u ( ) u (x)  d u (x) u ( )  d         
   

1
( ) ( )

x b

2 1 1 2
a x

u (x) =  u (x) u ( )  d u (x) u ( )  d
C

           
   

1
( ) ( )

x b

2 1 1 2
a x

u (x)   u (x) u ( )  d u (x) u ( )  d
C

            
   

 
1

( )2 1 1 2 u (x) u (x) u (x) u (x) x
C

   

 p(x)u (x) p(x)u (x) q(x) u(x)  

1
( ) ( )

x b

2 1 2 2
a x

 {Lu (x)} u ( )  d {Lu (x)} u ( )  d
C

         
   

1
( )

C
 p(x). x

C p(x)

 
  

 

   


( )

( )
b

1
2

a

u a
u  ( ) d

C
   

( )
( )

b
1

2
a

u b
u (a)  =  u  ( ) d

C
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Note. Let (x) = r(x) u(x) f(x). 

From the differential equation (1), we have  

  Lu(x) + r(x) u(x) = f(x)       (15) 

The corresponding Fredholm integral equation becomes 

  u(x) =    (16) 

where G(x, ) is the Green’s function. 

From (9), it follows that G(x, ) is symmetric but the kernel K(x, ) {= G(x, )r( )} is not 

symmetric unless r(x) is a constant. 

Consider  with the assumption that r(x) is non – negative over (a, b). This equation 

(16) may be expressed as  

   

or   V(x) = ,    (17) 

where K(x, ) =  and hence possesses the same symmetry as G(x, ). 

3.2.2. Example. Construct an integral equation corresponding to the boundary value problem. 

    x2      (1) 

     u(0) = 0, u(1) = 0       (2) 

Solution. The differential equation (1) may be written as  

    u = 0. 

or     

Comparing with the equation (15), we have  

    p = x, q = , r = x       (3) 

The general solution of the homogeneous equation 

   L(u) = 0     is given by  

  



 ( ) ( )
b b

a a
G x ,  r( ) u( ) d G x ,  f ( ) d        



   

{ }r(x) u(x) V(x)

b b

a a

V(x)
G (x , ) r( ) V( ) d G (x , ) f( ) d

r(x)
         

b b

a a

f( ) 
K (x , ) V( ) d K (x , ) d

r( )


     


 

 { }r(x)r( )  G(x , )  

( 1)
2

2

2

d u du
x x  u  =  0 ,

dx dx
   

d

dx

1du
x x

dx x

   
      

   

d du u
x xu = 0.

dx dx x

  
   

  

1

x



d du u

x  = 0
dx dx x
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  u(x) = C1x + C2  

Consider u = u1(x) and u = u2(x) be the non – trivial solutions of the equation, which satisfy the 

conditions at x = 0 and x = 1 respectively then 

  u1(x) = x and u2(x) = . 

The Wronskian of u1(x) and u2(x) is given by  

  W[u1(x), u2(x)] =  =  

So,     C = 2 

Thus from the relation (19), we have  

  G(x, ) =       (4) 

Therefore, from (16), the corresponding Fredholm integral equation becomes 

 u(x) = , where the Green’s function G(x, ) is defined by the relation (4). 

3.2.3. Example. Construct Green’s function for the homogeneous boundary value problem 

   = 0 with the conditions u(0) = (0) = 0, u(1) = (1) = 0. 

Solution. The differential equation is given by  

   = 0         (1) 

We notice that the boundary value problem contains only a trivial solution. The fundamental system of 

solutions for the differential equation (1) is  

  u1(x) = 1, u2(x) = x, u3(x) = x2, u4(x) = x3     (2) 

Its general solution is of the form 

  u(x) = A + Bx + Cx2 + Dx3,  

where A, B, C, D are arbitrary constants. The boundary conditions give the relations for determining the 

constants A, B, C, D : 

 u(0) = 0     A = 0, (0) = 0      B = 0  

1

x

 
 
 

1
x

x


1 2

1 2

u (x) u (x)

u (x) u (x)  2

1 1 2
1x x

x x x

   
        
   

2
1 2 2 1u (x)u (x) u (x)u (x)  =  

x
    



2

2

1
(1 )

2

1
(1 )

2

x
 ,   x <  ,

x  ,   x >  ,
x


  


  



1

0
G(x , )  u( ) d     

4

4

d u

dx
u u

4

4

d u

dx

 u 
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u(1) = 0    A + B + C + D = 0, (1) = 0    B + 2C + 3D = 0  

       A = B = C = D = 0. 

Thus the boundary value problem has only a zero solution u(x)  0 and hence we can construct a 

unique Green’s function for it. 

Construction of Green’s Function: Consider the unknown Green’s function G(x, ) must have the 

representation on the interval [0, ) and ( , 1]. 

G (x, ) =   (3) 

where a1, a2, a3, a4, b1, b2, b3, b4 are the unknown functions of . 

Consider   Ck = bk( ) ak( ), k = 1, 2, 3, 4,…     (4) 

The system of linear equations for determining the functions Ck( ) become 

   C1 + C2  + C3
2 + C4

3 = 0 

    C2 + 2C3  + 3C4
2 = 0 

    2C3 + 6C4  = 0 

     6C4 = 1 

   C4( ) = , C3( ) = , C2( ) = 2, C1( ) = 3   (5) 

From the property 4 of Green’s function, it must satisfy the boundary conditions : 

   G(0, ) = 0, (0, ) = 0 

   G(1, ) = 0, (1, ) = 0 

The relations reduce to  

    a1 = 0, a2 = 0 

    b1 + b2 + b3 + b4 = 0 

b2 + 2b3 + 3b4 = 0       (6) 

From the relation (4), (5) and (6), we have  

   C1 = b1( ) a1( )  b1( ) = 3 

 or  C2 = b2( ) a2( )  b2( ) = 2 

 u 







 


, 0

, 1

2 3

1 2 3 4

2 3

1 2 3 4

a .1 a .x a .x a .x x

b .1 b .x b .x b .x x

      


     



  



  

 



 
1

6
 

1

2
 

1

2
  

1

6


 xG 

 xG 

     
1

6


    
1

2
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 or  b3 + b4 =   3, 2, 2b3 +3b4 =   2  

  b4( ) =  2   3 and b3( ) =  3 2 

or  C3( ) = b3( ) a3( ) 

  a3( ) = b3( ) C3( ) =  3 2 +  

and  C4( ) = b4( ) a4( ) 

  a4( ) = b4( ) C4( ) =  2   3  

Substituting the value of the constants a1, a2, a3, a4, b1, b2, C3, C4 in the relation (3), the Green’s function 

G(x, ) is obtained as  

 G(x, )=  

The expression G(x, ) may be transformed to  

G(x, ) =  

 G(x, ) = G( , x), that is, Green’s function is symmetric. 

3.2.4. Example. Construct Green’s function for the equation x  = 0 with the conditions u(x) is 

bounded as x 0, u(1) = . 

Solution. The differential equation is given by x  = 0   (1) 

or    

or  log  = logx + logA 

or  =   

or  u(x) = Alogx + B        (2) 

1

6


1

2
 

1

2


 
1

2
 

1

3
 

1

2
  

   

    
1

2
  

1

2


   

    
1

2
 

1

3
 

1

6





2 3 2 3

3 2 3 2 2 3

1 1 1 1 1
, 0

2 2 6 2 3

1 1 1 1 1
, 1

6 2 2 2 3

2 3

2 3

x x x

x x x x

   
              

   


                       




2 3 2 31 1 1 1 1

, 1
2 2 6 2 3

2 3x x x x x x
   

            
   

  

2

2

d u du

dx dx


 u (1) , 0  

2

2

d u du

dx dx


2 2d u dx 1
dx dx

du dx x

 
  

 

du

dx


du

dx

A

x
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The conditions u(x) is bounded as x 0 and u(1) =  has only a trivial solution u(x)  0, 

hence we can construct a (unique) Green’s function G(x, ) 

Consider the function as:  

  G(x, ) =       (3) 

where a1, a2, b1, b2 are unknown functions of . 

Consider Ck = bk( ) ak( ), k = 1, 2,… 

From the continuity of G(x, ) for x = , we obtain  

  b1 + b2log a1 a2 log  = 0 

and the jump (x, ) at the point x =  is equal to  so that  

  b2. a2.  =  

Putting  C1 = b1 a1, C2 = b2 a2       (4) 

   C1 + C2 log  = 0, C2 = 1. 

Hence   C1 = log    and  C2 = 1      (5) 

The boundedness of the function G(x, ) as x 0 gives a2 = 0 

Also,  G(x, ) = (x, ), b1 = b2 

   a1 = ( +log ), a2 = 0, b1 = 1, b2 =  

Substituting the value of the constants a1, a2, b1, b2 in the relation (3), the Green’s function is obtained as  

  G(x, ) = . 

3.2.5. Exercise. 

1. Construct the Green’s function for the boundary value problem  with the 

conditions u(0) = u(1) = 0. 

Answer.  G(x, ) =  

  u (1) , 0   



,G x 


log

log 1

1 2

1 2

a a x ,   0 < x

b b x ,   x

  


   



  

 

   

xG  
1



1




1




1



 

  

 

 

  xG  

      


( log )

(1 log ) 1

  ,  0 < x

x   ,  x

    

    

2u (x) u  =  0  



sin ( 1)sin

sin

sin sin ( 1
1

sin

x
  ,  0 x

x )
  ,  x
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2. Find the Green’s function for the boundary value problem  with the conditions 

u(0) = u(1) = 0. 

Answer. G(x, ) = . 

3.2.6. Article. If u(x) has continuous first and second derivatives, and satisfies the boundary value 

problem  with u(0) = u(l) = 0 then u(x) is continuous and satisfies the homogeneous linear 

integral equation u(x) = . 

Solution : The differential equation may be written as  

          (1) 

By integrating with regard to x over the interval (0, x) two times, we obtain  

    =  

or   u(x) =     (2) 

where C and D are the integration constants, to be determined by the boundary conditions. 

   u(0) = 0     D = 0 

   u(l) = 0     = 0 

         

Substituting the value of the constants C and D in (2), we have  

  u(x) =   

 or u(x) =  

 or u(x) =  

 or u(x) =  

2

2

d u
u(x) = 0

dx




sinh sinh( 1)

sinh1

sinh sinh( 1)
1

sinh1

x
 , 0 x

x
 , x

 
  


    



2

2

d u
u = 0

dx


1

0
G(x , ) u( ) d   

2

2

d u
u = 0

dx
 

2

2

d u
u 

dx
 

du

dx 0

x

 u( ) d C   


0

x

x(x ) u( ) d C D     




0

l

(l ) u( ) d Cl    


0

l

C  =  (l ) u( ) d
l


  

0 0

x l

(x ) u( ) d x(l ) u( ) d
l


       

0 0

x x l

x
(x ) u( ) d x(l ) u( ) d x(l ) u( ) d

l l

 
           

0

x l

x

x
(l x) u( ) d (l ) u( ) d

l l


       

0

l

G(x , ) u( ) d   
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where  G(x, ) = .  

3.2.7. Exercise. 

1. Construct the Green’s function for the boundary value problem  with the conditions 

u(0) = u(l) = 0. 

Answer. G(x, ) =  

2. Construct the Green’s function for the boundary value problem  = 0 with the conditions u(0) = 

(1) and (0) = u(1). 

Answer. G(x, ) =  

3. Construct the Green’s function for the boundary value problem  = 0 with the boundary 

conditions u(0) = (1) = 0 and (0) = u(1). 

Answer. G(x, ) =  

4. Construct the Green’s function for the boundary value problem  = 0 with u(x) is 

bounded as x 0 and u(1) = 0. 

Answer. G(x, ) =   

5. Construct the Green’s function for the boundary value problem  = 0 with the conditions u(0) 

= (0) and u(l) + (l) = 0. 



( )

( )

l x    ,  x > 
l

x
l    ,  x < 

l


 


  


2
2

2

d u
u = 0

dx




1 2

1 2

sin ( )sin
cos sin , 0

sin

sin sin ( )
cos sin ,

sin

l x
a x a x x <

l

x l
b x b x x l

l

  
        


          

  

2

2

d u

dx

u u


( 2) ( 1)

( 1) 1 1

x  ,   0 x <

x  ,           x

    


    

3

3

d u

dx

u u



1
( 1)[ 2 ]

2

1
[ (2 )( 2) ] 1

2

x x x       0 x < 

x x     x 


     


        


2
2

2

d u du
x x u

dx dx
 





2

1 1
1

2

1 1
1

2

x  , 0 x < 

x  , x 
x

  
    

  


        

2

2

d u
u

dx


u  u
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Answer. G(x, ) = , where . 

6. Using Green’s function, solve the boundary value problem (x) u(x) = x with boundary 

conditions u(0) = u(1) = 0. 

Answer. Here, G(x, ) =  and the solution of the given boundary 

value problem is given by u(x) = , so u(x) = . 

7. Using Green’s function, solve the boundary value problem  with the boundary 

conditions u(0) = 0 and u( ) = 0. 

Answer. Here, G(x, ) =  and u(x) =  , implies 

u(x) = x sin x. 

8. Solve the boundary value problem using Green’s function 

     = x2 ; u(0) = u( ) = 0. 

Answer. u(x) = . 

3.3. Construction of Green’s function when the boundary value problem contains a parameter. 

Consider a differential equation of order n 

  L(u) h = h(x)        (1) 

with   Vk(u) = 0, k = 1, 2, 3,…,n       (2) 

where  
1

0 1( ) ( ) ( ) ( ) ( ) ... ( ) ( )n n
nL u p x u x p x u x p x u x         (3) 

and 
1 1 1 1 1 1( ) ( ) '( ) ... ( ) ... ( ) '( ) ... ( ) ...n n n n

k k k k k k kV u u a u a u a u b u b u b                  (4) 

where the linear forms V1, V2,…, Vn in u(a), (a), …, (a), u(b), (b), …, (b) are linearly 

independent, h(x) is a given continuous function of x,  is some non–zero numerical parameter. 
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For h(x)  0, the equation (1) reduces to homogeneous boundary value problem 

  L(u) = ,  

  Vk(u) = 0, k = 1, 2, 3, …, n       (5) 

Those values of  for which the boundary value problem (5) has non trivial solutions u(x) are called the 

eigenvalues. The non–trivial solutions are called the associated eigen functions. 

If the boundary value problem 

  L(u) = 0,  

  Vk(u) = 0, k = 1, 2,…, n       (6) 

contains the Green’s function G(x, ), then the boundary value problem (1) and (2) is equivalent to the 

Fredholm integral equation  

  u(x) =       (7) 

where   f(x) =        (8) 

In particular, the homogeneous boundary value problem (5) is equivalent to the homogeneous integral 

equation 

  u(x) =        (9) 

Since G(x, ) is a continuous kernel, therefore the Fredholm homogeneous integral equation of second 

kind (9) can have at most a countable number of eigen values 1, 2,…, n which do not have a finite 

limit point. For all values of  different from the eigen values, the non-homogeneous equation (7) has a 

solution for any continuous function f(x). Thus the solution is given by 

  u(x) =       (10) 

where R(x,  ; ) is the resolvent kernel of the kernel G(x, ). The function R(x,  ; ) is a 

meromorphic function of  for any fixed values of x and  in [a, b]. The eigen values of the 

homogeneous integral equation (9) may by the pole of this function. 

3.3.1. Example. Reduce the boundary value problem  = x, u(0) = u( ) = 0, to an integral 

equation using Green’s function. 

Solution. Consider the associated boundary value problem 

           (1) 

whose general solution is given by u(x) = Ax + B 
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The boundary conditions u(0) = 0, u( ) = 0 yields only the trivial solution u(x)  0. Therefore, the 

Green’s function G(x, ) exists for the associated boundary value problem 

  G(x, ) =       (2) 

The Green’s function G(x, ) must satisfy the following properties : 

(I) The function G(x, ) is continuous at x = , that is, 

  b1  + b2 = a1  + a2 

  (b1 a1)  + (b2 a2) = 0       (3) 

(II) The derivative G(x, ) has a discontinuity of magnitude  at the point x = ,  

that is,    b1 a1 = 1    (4) 

(III) The function G(x, ) must satisfy the boundary conditions  

  G(0, ) = 0   a2 = 0      (5) 

  G( , ) = 0  b1  + b2 = 0    (6) 

Solving the equations (3), (4), (5) and (6), we have  

  a1 = , a2 = 0, b2 = , b1 = . 

Substituting the value of the constants in (2), the required Green’s function G(x, ) is obtained  

  G(x, ) =      (7) 

Consider the Green’s function G(x, ) given by the relation (7) as the kernel of the integral equation, 

we obtain the integral equation for u(x) : 

  u(x) = f(x) , where f(x) =  

 or f(x) =  
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 or f(x) =  

 or f(x) =  

 or f(x) =  

Thus, the given boundary value problem has been reduced to an integral equation 

  u(x) +  = . 

3.3.2. Exercise. 

1. Reduce the boundary value problem  = 1, u(0) = u(1) = 0 to an integral equation. 

Answer. G(x, ) =  = , and the required integral equation is 

u(x) =  

2. Reduce the boundary value problem to an integral equation  

  +1, u(0) = (0) = 0, (1) = (1) = 0 

Answer. u(x) = , where f(x) =  

3. Reduce the boundary value problem , with u( 1) = u(1) and 

( 1) = (1) to an integral equation. 

Answer. Here, G(x, ) =   

and u(x) = . 

4. Reduce the following boundary value problems to integral equations. 

 (a) , u(0) = (1),  (0) = u(1) 

 (b)  + u = ex, u(0) = (0),   u(1) = (1). 

2

3 2 3
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1 2x 1 2
1 x x

3 2 3

   
     

   



 
 

2
3 4 3 41 2 x 1 2

x x x x
3 3 24 2 3



 
   

2 3x
x

24 6




2

0
G(x , )  u( ) d



   
2

31
x x

24 6




2

2

d u
xu

dx



x 1

0 x
(1 x) d x(1 ) d      

1
x(1 x)

2


1

0

1
G(x , ) u( ) d x(1 x)

2
     

2

2

d u
u

dx
 u u u

1

0
G(x , ) u( ) d  f(x)    

2 21
x (x 4x 6)

24
 

2 2

2

d u x
u = u cos

dx 4 2

 
  

u  u



1
sin (x )    ,      1 x

2

1
sin ( x)  ,            x 1

2


 




 




   


   


1

21

x x 2 x
G(x , ) u( ) d sin cos

2 2

 
   

 

 
  
 



u u  =  2x + 1  u u

u  u u



60 Green Function 

 

Answer. (a) Here, G(x, ) = and the boundary value problem 

reduces to the integral equation  

u(x) = . 

(b) Here, G(x, ) =  and the boundary value problem reduces to 

u(x) = . 

5. Reduce the Bessel’s differential equation  with the conditions 

u(0) = 0, u(1) = 0 into an integral equation. 

Answer.: The standard equation of Bessel’s equation is given by  

Here, G(x, ) =  and the integral equation can be obtained as 

u(x) = .  

6. Determine the Green’s function G(x, ) for the differential equation  with 

the conditions u(0) = 0 and u(1) = 0. 

Answer. G(x, ) =  

3.4. Non–homogeneous ordinary Equation. The boundary value problem associated with a non – 

homogenous ordinary differential equation of second order is  

  Ly  A0(x)  + A1(x)  + A2(x) y = f(x), a < x < b  (1) 

with boundary conditions     (2) 

where 1, 2, 1 and 2 are constants. 
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3.4.1. Self–Adjoint Operator. The operator L is said to be self – adjoint if for any two functions say 

u(x) and v(x) operated on L, the expression (vLu uLv) dx is an exact differential that is, there exist a 

function g such that dg = (vLu uLv) dx. 

3.4.2. Green’s Function Method. Green’s function method is an important method to solve B.V.P. 

associated with non–homogeneous ordinary or partial differential equation . Here we shall show that a 

B.V.P. will be reduced to a Fredholm integral equation whose kernel is Green’s function. We shall be 

using a special type of B.V.P. namely Sturm – Liouville’s problem. 

3.4.3. Theorem. Show that the differential operator L of the Sturm – Liouville’s Boundary value 

problem (S.L.B.V.P.)  

  Ly =  +      (1) 

with         (2)   

where , , 2 and 2 are constants is self adjoint. 

Proof. Let u and v be two solutions of the given S.L.B.V.P. then 

 Lu =  +   

and  Lv =  +  

So, 

vLu uLv = v +  

       = v u  

       =  

       =   

       =  =  

where g = . Then, (vLu uLv) dx = dg 
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Hence operator in equation (1) is self – adjoint. 

3.4.4. Construction of Green’s function by variation of parameter method. 

Consider the non – homogeneous differential equation  

 Lu = + = f(x)     (1) 

subject to boundary condition: 

          (*) 

Construct the Green’s function and show that  

  u(x) =         (**) 

where G(x, ) is the Green’s function defined above. 

Solution. Let v1(x) and v2(x) be two linearly independent solution of the homogeneous differential 

equation. 

  Lu =  +  u(x) = 0     (2) 

Then the general solution of (2) by the method of variation of parameters is  

 u(x) = a1(x) v1(x) + a2(x) v2(x)       (3) 

where the unknown variables a1(x) and a2(x) are to be determined. We assume that neither the solution 

v1(x) nor v2(x) satisfy both the boundary conditions at x = a and x = b but the general solution u(x) 

satisfies these conditions. 

Now, we differentiate (3) w.r.t. x and obtain 

        (4) 

Let us equate to zero the terms involving derivatives of parameter, that is, 

  = 0        (5) 

which yields 

        (6) 

Putting the values of u(x) and  from (3) and (6) respectively in equation (1), we obtain 

Lu = + (a1v1 + a2v2) = f(x) 
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or a1 +  r(x) = f(x) (7) 

Since v1 and v2 are solutions of homogeneous equation (2), so by (7), we get  

 r(x) = f(x) 

  =        (8) 

Equations (5) and equation (8) can be solved to get 

    (9) 

Now the operator L is exact and we have proved that  

 v2 L v1 v1 L v2 =       (10) 

Since v1 and v2 are solutions of Sturm – Liouville homogeneous differential equation so that Lv1 = 0 and 

Lv2 = 0 and thus equation (10) gives 

  = 0 

 r(x)  = constant =  (say)      (11) 

Thus, equation (9) becomes 

 (x) =  and (x) =      (12) 

Integrating (12), we get 

 a1(x) =         (13) 

and  a2(x) =         (14) 

where c1 and c2 are arbitrary constants to be determined from the boundary condition on a1(x) and a2(x). 

These conditions are to be imposed in accordance with our earlier assumption that v1(x) and v2(x) does 

not satisfy boundary conditions but the final solution u(x) satisfies boundary conditions in equation (*). 

So, that 

          (15) 

          (16) 
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Using (3) and (6) in equation (15), we obtain 

  0 =   

      = +  

     = +  

Let us now assume that v2(x) satisfies first boundary condition of (*) but v1(x) does not satisfy it, then  

   

so that    a1(a)  = 0  a1(a) = 0 

Using this condition in (13), we get 

  0 = a1(a) =  which is satisfied when c1 = a 

Thus, the solution in (13) is : 

  a1(x) =        (17) 

Similarly, using (3) and (6) in (16), we obtain c2 = b and the solution in (14) is : 

  a2(x) =  =     (18) 

The final solution of the non – homogeneous B.V.P. is 

    u(x) = a1(x) v1(x) + a2(x) v2(x) 

           =   

          =  =  

where G(x, ) =  

3.5. Basic Properties of Green’s Function.  

3.5.1. Theorem. The Green function G(x, ) is symmetric in x and , that is, G(x, ) = G( , x). 
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Proof. Interchanging x and  in G(x, ) defined above : 

     G(x, ) =  = G( , x). 

3.5.2. Theorem. The function G(x, ) satisfies the boundary conditions given in equation (*). 

Proof. Consider  

1 G(a, ) + 2 (a, )  = 1  + 2  

     =   

      =  = 0 x    b 

Again, 1G(b, ) + 2 (b, ) = 1  + 2   

=  

     =  = 0 , a    x. 

3.5.3. Theorem. The function G(x, ) is continuous in [a, b] 

Proof. Clearly, G(x, ) is continuous at every point of [a, b] except possibly at x = . By definition of 

G(x, ), it can be observed that both branches have same value at x =  given by . 

Hence G(x, ) is continuous in [a, b]. 

3.5.4. Theorem.  has a jump discontinuity at x = , given by  

     

where r(x) is the co – efficient of  in equation (1). 

Proof. We have  =   

 



1 2

1 2

1
v ( ) v (x)       x  

1
v (x) v ( )          x 

 


 







 






   G    2 1 v (a)v ( )



 
 
 

 2 1 v (a)v ( )



 
 
 

 1 2 2 2 1

1
v (a) v (a) v ( )  




  1

1
0 v ( )


  

   G    1 2 v (b)v ( )



 
 
 

 1 2 v (b)v ( )



 
 
 

 1 1 2 1 2

1
v (b) v (b) v ( )  




  2

1
0 v ( )


  



 

   1 2

1
v ( ) v ( ) 





G

x






x = x = 

G G 1
  =  

x x r( ) 

 
 

   

u (x)

x = x = 
(x > ) (x < )

G G

x x 

 


  
 

   1 2 2 1x = x = 

1 1
v (x) v ( ) v (x) v ( ) 

 
 

 



66 Green Function 

 

      =  

     =    [By equation (11)] 

3.6. Fredholm Integral Equation and Green’s Function. Consider the general boundary value 

problem  

   A0(x)  + A1(x)  + A2(x) y + p(x) y = h(x)     (1) 

with boundary conditions: y(a) = 0, y(b) = 0.       (2) 

We shall show that it reduces to Fredholm integral equation with the Green’s function as its kernel. 

To make the above operator in (1) as a self – adjoint operator, we shift the term  p(x)y to the right side 

and then divide it by . 

The solution of (1) in terms of Green’s function is 

  y(x) =  where f(x) = h(x) p(x) y(x) 

or  y(x) =   

    =  

   = K(x) +      (3) 

 where   K(x) =        (4) 

This is a Fredholm integral equation of the second kind with kernel K(x, ) = G(x, ) p( ) and a non 

– homogeneous term K(x). 

Now, multiplying equation (3) by , we get  

  y(x) =  K(x) +  G(x, )  y( ) d  

Let us use, u(x) =  y(x) and g(x) =  K(x) 
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Then,  u(x) = g(x) +  G(x, ) u( ) d      (5) 

Here the kernel of Fredholm integral equation of second kind is symmetric that is, 

    K(x, ) =  G(x, )      (6) 

is symmetric, since G(x, ) is symmetric. 

Remark : We had obtained the required result in equation (3). We had proceed to obtain equation (5) 

just to get the kernel in more symmetric form. 

3.7. Check Your Progress. 

1. Solve the boundary value problem using Green’s function  with boundary 

conditions u(0) = (0), u(l) + (l) = 0. 

Answer. G(x, ) =  and u(x) =  

2. Solve the boundary value problem using Green’s function , with boundary conditions  u(0) = 

(0) = (1) = (1) = 0. 

Answer. G(x, ) =  and 2 21
( ) ( 4 6)

24
u x x x x   . 

3.8. Summary. In this chapter, we discussed various methods to construct Green function for a given 

non-homogeneous linear second order boundary value problem and then boundary value problem can be 

reduced to Fredholm integral equation with Green function as kernel and hence can be solbed using the 

methods studied in the previous chapter. 
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